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Abstract. The (tree) amplituhedron An,k,m is the image in the Grassmannian Grk,k+m of
the totally nonnegative part of Grk,n, under a (map induced by a) linear map which
is totally positive. It was introduced by Arkani-Hamed and Trnka in 2013 in order
to give a geometric basis for the computation of scattering amplitudes in N = 4 su-
persymmetric Yang-Mills theory. When k + m = n, the amplituhedron is isomorphic
to the totally nonnegative Grassmannian, and when k = 1, the amplituhedron is a
cyclic polytope. While the case m = 4 is most relevant to physics, the amplituhedron
is an interesting mathematical object for any m. We study it in the case m = 1. We
start by taking an orthogonal point of view and define a related “B-amplituhedron”
Bn,k,m, which we show is isomorphic to An,k,m. We use this reformulation to describe
the amplituhedron in terms of sign variation. We then give a cell decomposition of
the amplituhedron An,k,1 using the images of a collection of distinguished cells of the
totally nonnegative Grassmannian. We also show that An,k,1 can be identified with the
complex of bounded faces of a cyclic hyperplane arrangement. We deduce that An,k,1 is
homeomorphic to a ball.

Résumé. L’amplituèdre An,k,m est l’image dans la grassmannienne Grk,k+m de la par-
tie totalement non négative de Grk,n par une (application induite par une) application
linéaire totalement positive. Il a introduit par Arkani-Hamed et Trnka en 2013 afin
de fournir une base géométrique pour le calcul des amplitudes de diffusion dans la
théorie supersymétrique N = 4 de Yang-Mills. Dans le cas k + m = n, l’amplituèdre
est isomorphe à la grassmannienne totalement non négative, et dans le cas k = 1,
l’amplituèdre est un polytope cyclique. Bien que le cas m = 4 est le plus perti-
nent pour la physique, l’amplituèdre est un objet d’intérêt mathématique pour tous
m. Nous l’étudions dans le cas m = 1. Nous commençons par prendre un point
de vue orthogonal et définissons Bn,k,m, le «B-amplituèdre», que nous montrons est
isomorphe à An,k,m. Nous utilisons cette reformulation pour décrire l’amplituèdre en
termes de variations de signe. Nous fournissons ensuite une décomposition cellulaire
de l’amplituèdre An,k,1, en utilisant les images d’une collection de cellules distinguées
de la grassmannienne totalement non négative. Nous montrons également qu’on peut
identifier An,k,1 au complexe de faces bornées d’un arrangement cyclique d’hyperplans.
Nous déduisons que An,k,1 est homéomorphe à une boule.
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1 Introduction

The totally nonnegative Grassmannian Gr≥0
k,n is the subset of the real Grassmannian Grk,n

consisting of points with all Plücker coordinates nonnegative. Following seminal work
of Lusztig [15], as well as by Fomin and Zelevinsky [7], Postnikov initiated the combina-
torial study of Gr≥0

k,n and its cell decomposition [18]. Since then the totally nonnegative
Grassmannian has found applications in diverse contexts such as mirror symmetry [16],
soliton solutions to the KP equation [13], and scattering amplitudes for N = 4 super-
symmetric Yang-Mills theory [2].

Building on [2], Arkani-Hamed and Trnka [1] recently introduced a beautiful new
mathematical object called the (tree) amplituhedron, which is the image of the totally
nonnegative Grassmannian under a particular map.

Definition 1.1. Let Z be a (k+m)× n real matrix whose maximal minors are all positive,
where m ≥ 0 is fixed with k + m ≤ n. Then it induces a map

Z̃ : Gr≥0
k,n → Grk,k+m

defined by
Z̃(〈v1, . . . , vk〉) := 〈Z(v1), . . . , Z(vk)〉,

where 〈v1, . . . , vk〉 is an element of Gr≥0
k,n written as the span of k basis vectors. (The

fact that Z has positive maximal minors ensures that Z̃ is well defined.) The (tree)
amplituhedron An,k,m(Z) is defined to be the image Z̃(Gr≥0

k,n) inside Grk,k+m.

In special cases the amplituhedron recovers familiar objects. If Z is a square matrix,
i.e. k + m = n, then An,k,m(Z) is isomorphic to the totally nonnegative Grassmannian. If
k = 1, then An,1,m(Z) is a cyclic polytope in projective space [25].

While the amplituhedron An,k,m(Z) is an interesting mathematical object for any m,
the case of immediate relevance to physics is m = 4. In this case, it provides a geometric
basis for the computation of scattering amplitudes in N = 4 supersymmetric Yang-Mills
theory. These amplitudes are complex numbers related to the probability of observing
a certain scattering process of n particles. It is expected that such amplitudes can be
expressed (modulo higher-order terms) as an integral over the amplituhedron An,k,4(Z).
This statement would follow from the conjecture of Arkani-Hamed and Trnka [1] that
the images of a certain collection of 4k-dimensional cells of Gr≥0

k,n provide a “triangu-
lation” of the amplituhedron An,k,4(Z). More specifically, the BCFW recurrence [3, 4]
provides one way to compute scattering amplitudes. Translated into the Grassmannian
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Figure 1: The amplituhedron An,k,1(Z) as the complex of bounded faces of a cyclic
hyperplane arrangement of n hyperplanes in Rk, for k = 2, 3 and n ≤ 6.

formulation of [2], the terms in the BCFW recurrence can be identified with a collection
of 4k-dimensional cells in Gr≥0

k,n. If the images of these BCFW cells in An,k,4(Z) fit to-
gether in a nice way, then we can combine the contributions from each term into a single
integral over An,k,4(Z).

We study the amplituhedron An,k,1(Z) for m = 1. We find that this object is already
interesting and non-trivial. Since An,k,1(Z) ⊆ Grk,k+1, it is convenient to take orthogonal
complements and work with lines rather than k-planes in Rk+1. This leads us to define
a related “B-amplituhedron”

Bn,k,m(W) := {V⊥ ∩W : V ∈ Gr≥0
k,n} ⊆ Grm(W),

which is homeomorphic to An,k,m(Z), where W is the subspace of Rn spanned by the
rows of Z (Section 3). We then describe Bn,k,m(W) explicitly in terms of sign variation.

Using this description, we show that the m = 1 amplituhedron is triangulated by
the images of certain k-dimensional cells of Gr≥0

k,n, which come from an m = 1 analogue
of the BCFW recursion. More specifically, we prove that An,k,1(Z) is homeomorphic to
a k-dimensional subcomplex of the totally nonnegative Grassmannian Gr≥0

k,n (Section 4).
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See Figure 2 for A4,2,1(Z) as a subcomplex of Gr≥0
2,4 . We also show that An,k,1(Z) can be

identified with the complex of bounded faces of a certain hyperplane arrangement of n
hyperplanes in Rk, called a cyclic hyperplane arrangement (Section 5). Along the way to
proving this result, we determine which sign vectors label the bounded and unbounded
faces of such an arrangement.

It is known that the totally nonnegative Grassmannian has a remarkably simple topol-
ogy: it is contractible with boundary a sphere [21], and its poset of cells is Eulerian [26].
While there are not yet any general results in this direction, calculations of Euler char-
acteristics [9] indicate that the amplituhedron An,k,m(Z) is likely also topologically very
nice. Our description of An,k,1(Z) as the complex of bounded faces of a hyperplane ar-
rangement, together with a result of Dong [6], implies that the m = 1 amplituhedron is
homeomorphic to a closed ball (Corollary 5.6).

Further results and the proofs of all results stated here appear in our preprint [12].

2 Background on the Grassmannian and sign variation

The (real) Grassmannian Grk,n is the space of all k-dimensional subspaces of Rn, for 0 ≤
k ≤ n. An element of Grk,n can be viewed as a k × n matrix of rank k, modulo row
operations. Let [n] denote {1, . . . , n}, and ([n]k ) the set of all k-element subsets of [n].
Given V ∈ Grk,n represented by a k × n matrix A, for I ∈ ([n]k ) we let ∆I(V) be the
maximal minor of A located in the column set I. The ∆I(V) do not depend on our choice
of matrix A (up to simultaneous rescaling by a nonzero constant), and give projective
coordinates on Grk,n called Plücker coordinates.

Definition 2.1 ([18, Section 3]). We say that V ∈ Grk,n is totally nonnegative if ∆I(V) ≥ 0
for all I ∈ ([n]k ), and totally positive if ∆I(V) > 0 for all I ∈ ([n]k ). The set of all totally
nonnegative V ∈ Grk,n is the totally nonnegative Grassmannian Gr≥0

k,n, and the set of all

totally positive V is the totally positive Grassmannian Gr>0
k,n. For M ⊆ ([n]k ), the positroid cell

SM is the set of V ∈ Gr≥0
k,n with the prescribed collection of Plücker coordinates strictly

positive (i.e. ∆I(V) > 0 for all I ∈ M), and the remaining Plücker coordinates equal to
zero (i.e. ∆J(V) = 0 for all J ∈ ([n]k ) \M). We call M a positroid if SM is nonempty. We let
Qk,n denote the poset on the cells of Gr≥0

k,n defined by SM ≤ SM′ if and only if SM ⊆ SM′ .

In [18], Postnikov defined several families of combinatorial objects which are in bijec-
tion with positroids. We will work with one particular set of objects, called L-diagrams.

Definition 2.2. Fix k and n, and let λ be a partition whose Young diagram is contained
in the k× (n− k) rectangle. A L-diagram D of shape λ and type (k, n) is a filling of the
Young diagram of λ with the symbols 0 and +, such that there is no 0 which has a +
above it in the same column and a + to its left in the same row.
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To each L-diagram D of type (k, n), we associate a positroid M(D) ⊆ ([n]k ) as follows.
We delete the 0’s of D and replace each + with a hook, which extends east and south
to border of the Young diagram. We label the edges along the southeast border of the
Young diagram by 1, . . . , n, which we regard as boundary vertices, and let I ∈ ([n]k ) be

the labels of the vertical edges. Then M(D) is the set of J ∈ ([n]k ) such that there exists
a flow from I to J, i.e. a family of k nonintersecting paths each joining a vertex in I to a
vertex in J, travelling only left and down along the edges of the graph. Postnikov [18,
Theorem 17.1] showed that D 7→ M(D) is a bijection from L-diagrams of type (k, n) to
positroids which index the cells of Gr≥0

k,n, where dim(SM(D)) is the number of +’s in D.
We partially order L-diagrams according to the partial order on positroid cells.

Figure 2 shows the poset Q2,4, with elements labeled by their corresponding L-diagram.

Example 2.3. Let V ∈ Gr≥0
2,4 be represented by the matrix

[
1 0 0 −1
−1 2 1 3

]
. Then V ∈ SM,

where M := {{1, 2}, {1, 3}, {1, 4}, {2, 4}, {3, 4}}. The L-diagram corresponding to M is

D :=
+ 0
+ +

. We can read off M as in Definition 2.2 from the graph
1

2

34

. ♦

Definition 2.4. Given v ∈ Rn, let var(v) be the number of times v changes sign, viewed
as a sequence of n numbers and ignoring any zeros. (We set var(0) := −1.) We also let

var(v) := max{var(w) : w ∈ Rn such that wi = vi for all i ∈ [n] with vi 6= 0},

i.e. var(v) is the maximum number of times v changes sign after we choose a sign for
each zero. For example, if v := (4,−1, 0,−2) ∈ R4, then var(v) = 1 and var(v) = 3.

A result of Gantmakher and Krein characterizes totally nonnegative and totally pos-
itive subspaces in terms of sign variation.

Theorem 2.5 ([10, Theorems V.3, V.7, V.1, V.6]). Let V ∈ Grk,n.
(i) V ∈ Gr≥0

k,n ⇐⇒ var(v) < k for all v ∈ V ⇐⇒ var(w) ≥ k for all w ∈ V⊥ \ {0}.
(ii) V ∈ Gr>0

k,n ⇐⇒ var(v) < k for all v ∈ V \ {0} ⇐⇒ var(w) ≥ k for all w ∈ V⊥ \ {0}.

3 A complementary view of the amplituhedron

The amplituhedron An,k,m(Z) is a subset of Grk,k+m. Since we are considering the case
m = 1, it will be convenient for us to take orthogonal complements and work with
subspaces of dimension m, rather than codimension m. To that end, we define an object
Bn,k,m, which we show is homeomorphic to An,k,m. (We emphasize that Bn,k,m is merely
an equivalent way of defining the amplituhedron, not a type B analogue of it.)
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Definition 3.1. Given W ∈ Gr>0
k+m,n, let Grm(W) denote the set of X ∈ Grm,n with X ⊆W.

Define

Bn,k,m(W) := {V⊥ ∩W : V ∈ Gr≥0
k,n} ⊆ Grm(W),

where Theorem 2.5 implies that dim(V⊥ ∩W) = m for V ∈ Gr≥0
k,n. We remark that Lam

used a similar construction to define universal amplituhedron varieties [14, Section 18].

Proposition 3.2. Suppose that Z is a (k + m)× n matrix (n ≥ k + m) with positive maximal
minors, and W ∈ Gr>0

k+m,n is the row span of Z. Then there is a homeomorphism from An,k,m(Z)
to Bn,k,m(W), which sends Z̃(V) to V⊥ ∩W for all V ∈ Gr≥0

k,n.

In the case m = 1, we can describe Bn,k,1(W) explicitly using sign variation. Note that
Gr1(W) = P(W), projective space of lines in W.

Lemma 3.3. For W ∈ Gr>0
k+1,n, we have Bn,k,1(W) = {w ∈ P(W) : var(w) = k} ⊆ P(W).

In general, we have the containment

Bn,k,m(W) ⊆ {X ∈ Grm(W) : k ≤ var(v) ≤ k + m− 1 for all v ∈ X \ {0}},

which follows directly from Theorem 2.5. It is an important open problem to determine
if equality holds. If it does, we can apply results of [11] to describe Bn,k,m(W) explicitly
in terms of the Plücker coordinates of elements of Grm(W); see [12, Section 3.3].

4 An,k,1 as a subcomplex of Gr≥0
k,n

In this section we show that the m = 1 amplituhedron is isomorphic to an induced
subcomplex of cells of the totally nonnegative Grassmannian. We will work with our
reformulation of the amplituhedron, Bn,k,1(W). We begin by defining a decomposition
of Bn,k,1(W), whose pieces are indexed by sign vectors with a natural partial order.

Definition 4.1. Let Signn,k,1 denote the set of nonzero sign vectors σ ∈ {0,+,−}n with
var(σ) = k, such that if i ∈ [n] indexes the first nonzero component of σ, then σi =
(−1)i−1. We define a partial order on {0,+,−}n, such that σ ≤ τ if and only if σi = τi
for all i ∈ [n] such that σi 6= 0. (Equivalently, σ ≤ τ if and only if we can obtain σ from
τ by setting some components to 0.) This gives a partial order on Signn,k,1.

For σ ∈ Signn,k,1, we define Bσ(W) := {w ∈ W \ {0} : sign(w) = ±σ}. Note that
by Lemma 3.3, we indeed have Bn,k,1(W) =

⊔
σ∈Signn,k,1

Bσ(W). We partially order the

terms of this decomposition according to the poset structure on Signn,k,1. (We will show
in Theorem 4.4 that σ ≤ τ if and only if Bσ(W) ⊆ Bτ(W).)
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Figure 2: The poset Q2,4 of cells of Gr≥0
2,4 , where each cell is identified with the corre-

sponding L-diagram. The bold edges indicate the subcomplex (an induced subposet)
which gets identified with the amplituhedron A4,2,1(Z).

In order to identify Bn,k,1(W) with a subcomplex of Gr≥0
k,n, we associate to each σ ∈

Signn,k,1 a L-diagram of type (k, n), as follows.

Definition 4.2. Let Dn,k,1 be the set of L-diagrams of type (k, n) whose rows each have
at most one +, and each + appears at the right end of its row. We regard Dn,k,1 as an
induced subposet of Qk,n, in which it is an order ideal (i.e. downset); see Figure 2.

For D ∈ Dn,k,1, we define a sign vector σ(D) ∈ {0,+,−}n recursively as follows. First
we label the edges of the southeast border of D by 1, . . . , n from northeast to southwest.
Then we set σ(D)1 := +, and for i = 1, . . . , n− 1, we let σ(D)i+1 := σ(D)i if i labels a
horizontal step of the southeast border of D, and σ(D)i+1 := −σ(D)i if i labels a vertical
step. Finally, for each j ∈ [n] which labels a vertical step of the southeast border of D
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whose row contains no +, we set σ(D)j to zero.

For example, if D =
0 0 0 0 +

0 0
∈ D7,2,1, we have σ(D) = (+,−,−,−, 0,+,+). We

remark that we can obtain the L-diagrams in Dn,k,1 from an m = 1 analogue of the BCFW
recursion; see [12, Section 4].

Lemma 4.3. The map D 7→ σ(D) is a poset isomorphism from Dn,k,1 to Signn,k,1.

Theorem 4.4. Define S := tD∈Dn,k,1
SM(D), which is a subcomplex of the cells of Gr≥0

k,n. Then
the map

S → Bn,k,1(W), V 7→ V⊥ ∩W

is a homeomorphism, which induces a poset isomorphism on the decompositions of S and Bn,k,1(W).
In particular, Bn,k,1(W) is stratified by Signn,k,1, and Bσ(W) =

⊔
τ≤σ Bτ(W) for all σ ∈

Signn,k,1. The codimension of Bσ(W) equals the number of zero components of σ.

For example, the poset of cells of B4,2,1(W) is highlighted in bold in Figure 2. The 3 top-
dimensional cells correspond to the elements (+,−,−,+), (+,+,−,+), (+,−,+,+) of
Sign4,2,1 with no zero components.

5 An,k,1 as the complex of bounded faces of a cyclic hyper-
plane arrangement

We show that the m = 1 amplituhedron Bn,k,1(W) (or An,k,1(Z)) is homeomorphic to
the complex of bounded faces of a cyclic hyperplane arrangement of n hyperplanes in Rk.
It then follows from a result of Dong [6] that it is homeomorphic to a ball. This story
is somewhat analogous to that of k = 1 amplituhedra An,1,m, which are cyclic polytopes
with n vertices in Pm. Cyclic hyperplane arrangements have been studied by Shannon
[22], Ziegler [27], Ramírez Alfonsín [19], and Forge and Ramírez Alfonsín [8]. For an
introduction to hyperplane arrangements, see [24].

Remark 5.1. Cyclic polytopes have many faces of each dimension, in the sense of the
upper bound theorem of McMullen [17] and Stanley [23]. An analogous property of
cyclic hyperplane arrangements is that they have few simplicial faces of each dimension,
in the sense of Shannon [22].

Definition 5.2. Let W ∈ Gr>0
k+1,n. By a result of Rietsch [20], W contains a k-dimensional

totally positive subspace V. Let w(1), . . . , w(k) be a basis of V, and take w(0) ∈ W \ V.
After replacing w(0) with −w(0) if necessary, we assume that w(0) is positively oriented
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with respect to V, by which we mean that the orthogonal projection of w(0) to V⊥ has a
positive first component.

We let HW be the hyperplane arrangement in Rk with hyperplanes

Hi := {x ∈ Rk : w(1)
i x1 + · · ·+ w(k)

i xk + w(0)
i = 0} for i ∈ [n].

Then HW partitions Rk into polyhedra, which we call its faces. Also, HW is generic, i.e.
the intersection of any j ≤ k of its hyperplanes has codimension j, and the intersection
of any j > k hyperplanes is empty.

Given w ∈W, we let 〈w〉 ∈ P(W) denote the line spanned by w. We define the maps

ΨHW : Rk → P(W), x 7→ 〈x1w(1) + · · ·+ xkw(k) + w(0)〉,
ψHW : Rk → {0,+,−}n, x 7→ sign(x1w(1) + · · ·+ xkw(k) + w(0)).

The faces of HW are precisely the nonempty fibers of ψHW . If σ ∈ {0,+,−}n has a
nonempty preimage under ψHW , we call this fiber the face of HW labeled by σ. When we
identify faces with labels in this way, the face poset of HW is an induced subposet of the
sign vectors {0,+,−}n. We also let B(HW) be the subcomplex of bounded faces of HW .

Remark 5.3. In the literature, a cyclic hyperplane arrangement of n hyperplanes in Rk is
usually defined to be an arrangement with hyperplanes

Hi := {x ∈ Rk : tix1 + t2
i x2 + · · ·+ tk

i xk + 1 = 0} for i ∈ [n],

where 0 < t1 < · · · < tn. These are special cases of our arrangements HW , since they
satisfy the positive orientation condition of Definition 5.2 (see [12, Proposition 6.8]). By
Lemma 5.4, our arrangements HW are all combinatorially equivalent to each other (i.e.
they have the same face poset), which is why we call all of them “cyclic” arrangements.

The main result of this section is that Bn,k,1(W) ∼= B(HW). The key to the proof is
determining the labels of the bounded and unbounded faces of HW .

Lemma 5.4. Let W ∈ Gr>0
k+1,n, andHW be a cyclic hyperplane arrangement as in Definition 5.2.

(i) The labels of the bounded faces of HW are precisely Signn,k,1.
(ii) The labels of the unbounded faces of HW are precisely σ ∈ {0,+,−}n with var(σ) ≤ k− 1.

Theorem 5.5. In the notation of Definition 5.2, the restriction of ΨHW to B(HW) is a homeo-
morphism from B(HW) to Bn,k,1(W), which induces a poset isomorphism on the stratifications
of B(HW) and Bn,k,1(W). Explicitly, ΨHW sends the face of HW labeled by σ to the stratum
Bσ(W) of Bn,k,1(W), for all σ ∈ Signn,k,1.
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Dong [6, Theorem 3.1] showed that the bounded complex of a uniform affine oriented
matroid (of which the bounded complex of a generic hyperplane arrangement is a special
case) is a piecewise linear ball. Therefore Theorem 5.5 implies the following.

Corollary 5.6. The m = 1 amplituhedron is homeomorphic to a closed ball.

As a further corollary of Theorem 5.5, we obtain the generating function for the
stratification of Bn,k,1(W) with respect to dimension, since Buck found the correspond-
ing generating function of B(H) for a generic hyperplane arrangement H (which only
depends on its dimension and the number of hyperplanes).

Corollary 5.7 ([5]). Let fn,k,1(q) := ∑strata S of Bn,k,1(W) qdim(S) ∈ N[q] be the generating func-
tion for the stratification of Bn,k,1(W), with respect to dimension. Then

fn,k,1(q) =
k

∑
i=0

(
n− k− 1 + i

i

)(
n

k− i

)
qi =

k

∑
j=0

(
n− k− 1 + j

j

)
(1 + q)j.

For example, we have f5,3,1(q) = 4q3 + 15q2 + 20q + 10, which we invite the reader to
verify from Figure 1. Note that by substituting q = −1 into the last expression above, it
is easy to check that the Euler characteristic of Bn,k,1(W) equals 1.

We can also use Theorem 5.5 to describe how the cells of the m = 1 amplituhedron fit
together; see [12, Section 7]. In [12], we also study the image in the m = 1 amplituhedron
of an arbitrary cell of the totally nonnegative Grassmannian. In particular, we identify
which cells are mapped injectively to the m = 1 amplituhedron.

Theorem 5.8. Let D be a L-diagram of type (k, n). Then the map SM(D) → Bn,k,1(W), V 7→
V⊥ ∩W is injective on the cell SM(D) if and only if D satisfies the following conditions: D has
at most one + per row, and there is no 0 which has a + above it in the same column and a
+ elsewhere in the same row. (See [12, Theorem 8.10] for an explicit description of the cells of
Bn,k,1(W) in the image of SM(D) in this case.)
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